3.478 \(\int \coth ^4(e+f x) (a+b \sinh ^2(e+f x))^{3/2} \, dx\)

Optimal. Leaf size=306 \[ \frac{(3 a+b) (a+3 b) \text{sech}(e+f x) \sqrt{a+b \sinh ^2(e+f x)} \text{EllipticF}\left (\tan ^{-1}(\sinh (e+f x)),1-\frac{b}{a}\right )}{3 a f \sqrt{\frac{\text{sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}+\frac{8 (a+b) \tanh (e+f x) \sqrt{a+b \sinh ^2(e+f x)}}{3 f}+\frac{(3 a+5 b) \sinh (e+f x) \cosh (e+f x) \sqrt{a+b \sinh ^2(e+f x)}}{3 f}-\frac{\coth ^3(e+f x) \left (a+b \sinh ^2(e+f x)\right )^{3/2}}{3 f}-\frac{(a+b) \cosh ^2(e+f x) \coth (e+f x) \sqrt{a+b \sinh ^2(e+f x)}}{f}-\frac{8 (a+b) \text{sech}(e+f x) \sqrt{a+b \sinh ^2(e+f x)} E\left (\tan ^{-1}(\sinh (e+f x))|1-\frac{b}{a}\right )}{3 f \sqrt{\frac{\text{sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}} \]

[Out]

-(((a + b)*Cosh[e + f*x]^2*Coth[e + f*x]*Sqrt[a + b*Sinh[e + f*x]^2])/f) + ((3*a + 5*b)*Cosh[e + f*x]*Sinh[e +
 f*x]*Sqrt[a + b*Sinh[e + f*x]^2])/(3*f) - (Coth[e + f*x]^3*(a + b*Sinh[e + f*x]^2)^(3/2))/(3*f) - (8*(a + b)*
EllipticE[ArcTan[Sinh[e + f*x]], 1 - b/a]*Sech[e + f*x]*Sqrt[a + b*Sinh[e + f*x]^2])/(3*f*Sqrt[(Sech[e + f*x]^
2*(a + b*Sinh[e + f*x]^2))/a]) + ((3*a + b)*(a + 3*b)*EllipticF[ArcTan[Sinh[e + f*x]], 1 - b/a]*Sech[e + f*x]*
Sqrt[a + b*Sinh[e + f*x]^2])/(3*a*f*Sqrt[(Sech[e + f*x]^2*(a + b*Sinh[e + f*x]^2))/a]) + (8*(a + b)*Sqrt[a + b
*Sinh[e + f*x]^2]*Tanh[e + f*x])/(3*f)

________________________________________________________________________________________

Rubi [A]  time = 0.358856, antiderivative size = 306, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.32, Rules used = {3196, 473, 580, 528, 531, 418, 492, 411} \[ \frac{8 (a+b) \tanh (e+f x) \sqrt{a+b \sinh ^2(e+f x)}}{3 f}+\frac{(3 a+5 b) \sinh (e+f x) \cosh (e+f x) \sqrt{a+b \sinh ^2(e+f x)}}{3 f}-\frac{\coth ^3(e+f x) \left (a+b \sinh ^2(e+f x)\right )^{3/2}}{3 f}-\frac{(a+b) \cosh ^2(e+f x) \coth (e+f x) \sqrt{a+b \sinh ^2(e+f x)}}{f}+\frac{(3 a+b) (a+3 b) \text{sech}(e+f x) \sqrt{a+b \sinh ^2(e+f x)} F\left (\tan ^{-1}(\sinh (e+f x))|1-\frac{b}{a}\right )}{3 a f \sqrt{\frac{\text{sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}-\frac{8 (a+b) \text{sech}(e+f x) \sqrt{a+b \sinh ^2(e+f x)} E\left (\tan ^{-1}(\sinh (e+f x))|1-\frac{b}{a}\right )}{3 f \sqrt{\frac{\text{sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}} \]

Antiderivative was successfully verified.

[In]

Int[Coth[e + f*x]^4*(a + b*Sinh[e + f*x]^2)^(3/2),x]

[Out]

-(((a + b)*Cosh[e + f*x]^2*Coth[e + f*x]*Sqrt[a + b*Sinh[e + f*x]^2])/f) + ((3*a + 5*b)*Cosh[e + f*x]*Sinh[e +
 f*x]*Sqrt[a + b*Sinh[e + f*x]^2])/(3*f) - (Coth[e + f*x]^3*(a + b*Sinh[e + f*x]^2)^(3/2))/(3*f) - (8*(a + b)*
EllipticE[ArcTan[Sinh[e + f*x]], 1 - b/a]*Sech[e + f*x]*Sqrt[a + b*Sinh[e + f*x]^2])/(3*f*Sqrt[(Sech[e + f*x]^
2*(a + b*Sinh[e + f*x]^2))/a]) + ((3*a + b)*(a + 3*b)*EllipticF[ArcTan[Sinh[e + f*x]], 1 - b/a]*Sech[e + f*x]*
Sqrt[a + b*Sinh[e + f*x]^2])/(3*a*f*Sqrt[(Sech[e + f*x]^2*(a + b*Sinh[e + f*x]^2))/a]) + (8*(a + b)*Sqrt[a + b
*Sinh[e + f*x]^2]*Tanh[e + f*x])/(3*f)

Rule 3196

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_), x_Symbol] :> With[{ff = FreeF
actors[Sin[e + f*x], x]}, Dist[(ff^(m + 1)*Sqrt[Cos[e + f*x]^2])/(f*Cos[e + f*x]), Subst[Int[(x^m*(a + b*ff^2*
x^2)^p)/(1 - ff^2*x^2)^((m + 1)/2), x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2]
 &&  !IntegerQ[p]

Rule 473

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[((e*x)^(m
 + 1)*(a + b*x^n)^p*(c + d*x^n)^q)/(e*(m + 1)), x] - Dist[n/(e^n*(m + 1)), Int[(e*x)^(m + n)*(a + b*x^n)^(p -
1)*(c + d*x^n)^(q - 1)*Simp[b*c*p + a*d*q + b*d*(p + q)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b*
c - a*d, 0] && IGtQ[n, 0] && GtQ[q, 0] && LtQ[m, -1] && GtQ[p, 0] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x
]

Rule 580

Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
x_Symbol] :> Simp[(e*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q)/(a*g*(m + 1)), x] - Dist[1/(a*g^n*(m + 1
)), Int[(g*x)^(m + n)*(a + b*x^n)^p*(c + d*x^n)^(q - 1)*Simp[c*(b*e - a*f)*(m + 1) + e*n*(b*c*(p + 1) + a*d*q)
 + d*((b*e - a*f)*(m + 1) + b*e*n*(p + q + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && IGtQ[n
, 0] && GtQ[q, 0] && LtQ[m, -1] &&  !(EqQ[q, 1] && SimplerQ[e + f*x^n, c + d*x^n])

Rule 528

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Simp[
(f*x*(a + b*x^n)^(p + 1)*(c + d*x^n)^q)/(b*(n*(p + q + 1) + 1)), x] + Dist[1/(b*(n*(p + q + 1) + 1)), Int[(a +
 b*x^n)^p*(c + d*x^n)^(q - 1)*Simp[c*(b*e - a*f + b*e*n*(p + q + 1)) + (d*(b*e - a*f) + f*n*q*(b*c - a*d) + b*
d*e*n*(p + q + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && GtQ[q, 0] && NeQ[n*(p + q + 1) + 1
, 0]

Rule 531

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Dist[
e, Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Dist[f, Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, n, p, q}, x]

Rule 418

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticF[ArcT
an[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 492

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(x*Sqrt[a + b*x^2])/(b*Sqr
t[c + d*x^2]), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 411

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticE[ArcTan
[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rubi steps

\begin{align*} \int \coth ^4(e+f x) \left (a+b \sinh ^2(e+f x)\right )^{3/2} \, dx &=\frac{\left (\sqrt{\cosh ^2(e+f x)} \text{sech}(e+f x)\right ) \operatorname{Subst}\left (\int \frac{\left (1+x^2\right )^{3/2} \left (a+b x^2\right )^{3/2}}{x^4} \, dx,x,\sinh (e+f x)\right )}{f}\\ &=-\frac{\coth ^3(e+f x) \left (a+b \sinh ^2(e+f x)\right )^{3/2}}{3 f}+\frac{\left (2 \sqrt{\cosh ^2(e+f x)} \text{sech}(e+f x)\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+x^2} \sqrt{a+b x^2} \left (\frac{3 (a+b)}{2}+3 b x^2\right )}{x^2} \, dx,x,\sinh (e+f x)\right )}{3 f}\\ &=-\frac{(a+b) \cosh ^2(e+f x) \coth (e+f x) \sqrt{a+b \sinh ^2(e+f x)}}{f}-\frac{\coth ^3(e+f x) \left (a+b \sinh ^2(e+f x)\right )^{3/2}}{3 f}+\frac{\left (2 \sqrt{\cosh ^2(e+f x)} \text{sech}(e+f x)\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+x^2} \left (\frac{3}{2} \left (2 a^2+5 a b+b^2\right )+\frac{3}{2} b (3 a+5 b) x^2\right )}{\sqrt{a+b x^2}} \, dx,x,\sinh (e+f x)\right )}{3 f}\\ &=-\frac{(a+b) \cosh ^2(e+f x) \coth (e+f x) \sqrt{a+b \sinh ^2(e+f x)}}{f}+\frac{(3 a+5 b) \cosh (e+f x) \sinh (e+f x) \sqrt{a+b \sinh ^2(e+f x)}}{3 f}-\frac{\coth ^3(e+f x) \left (a+b \sinh ^2(e+f x)\right )^{3/2}}{3 f}+\frac{\left (2 \sqrt{\cosh ^2(e+f x)} \text{sech}(e+f x)\right ) \operatorname{Subst}\left (\int \frac{\frac{3}{2} b (3 a+b) (a+3 b)+12 b^2 (a+b) x^2}{\sqrt{1+x^2} \sqrt{a+b x^2}} \, dx,x,\sinh (e+f x)\right )}{9 b f}\\ &=-\frac{(a+b) \cosh ^2(e+f x) \coth (e+f x) \sqrt{a+b \sinh ^2(e+f x)}}{f}+\frac{(3 a+5 b) \cosh (e+f x) \sinh (e+f x) \sqrt{a+b \sinh ^2(e+f x)}}{3 f}-\frac{\coth ^3(e+f x) \left (a+b \sinh ^2(e+f x)\right )^{3/2}}{3 f}+\frac{\left (8 b (a+b) \sqrt{\cosh ^2(e+f x)} \text{sech}(e+f x)\right ) \operatorname{Subst}\left (\int \frac{x^2}{\sqrt{1+x^2} \sqrt{a+b x^2}} \, dx,x,\sinh (e+f x)\right )}{3 f}+\frac{\left ((3 a+b) (a+3 b) \sqrt{\cosh ^2(e+f x)} \text{sech}(e+f x)\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1+x^2} \sqrt{a+b x^2}} \, dx,x,\sinh (e+f x)\right )}{3 f}\\ &=-\frac{(a+b) \cosh ^2(e+f x) \coth (e+f x) \sqrt{a+b \sinh ^2(e+f x)}}{f}+\frac{(3 a+5 b) \cosh (e+f x) \sinh (e+f x) \sqrt{a+b \sinh ^2(e+f x)}}{3 f}-\frac{\coth ^3(e+f x) \left (a+b \sinh ^2(e+f x)\right )^{3/2}}{3 f}+\frac{(3 a+b) (a+3 b) F\left (\tan ^{-1}(\sinh (e+f x))|1-\frac{b}{a}\right ) \text{sech}(e+f x) \sqrt{a+b \sinh ^2(e+f x)}}{3 a f \sqrt{\frac{\text{sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}+\frac{8 (a+b) \sqrt{a+b \sinh ^2(e+f x)} \tanh (e+f x)}{3 f}-\frac{\left (8 (a+b) \sqrt{\cosh ^2(e+f x)} \text{sech}(e+f x)\right ) \operatorname{Subst}\left (\int \frac{\sqrt{a+b x^2}}{\left (1+x^2\right )^{3/2}} \, dx,x,\sinh (e+f x)\right )}{3 f}\\ &=-\frac{(a+b) \cosh ^2(e+f x) \coth (e+f x) \sqrt{a+b \sinh ^2(e+f x)}}{f}+\frac{(3 a+5 b) \cosh (e+f x) \sinh (e+f x) \sqrt{a+b \sinh ^2(e+f x)}}{3 f}-\frac{\coth ^3(e+f x) \left (a+b \sinh ^2(e+f x)\right )^{3/2}}{3 f}-\frac{8 (a+b) E\left (\tan ^{-1}(\sinh (e+f x))|1-\frac{b}{a}\right ) \text{sech}(e+f x) \sqrt{a+b \sinh ^2(e+f x)}}{3 f \sqrt{\frac{\text{sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}+\frac{(3 a+b) (a+3 b) F\left (\tan ^{-1}(\sinh (e+f x))|1-\frac{b}{a}\right ) \text{sech}(e+f x) \sqrt{a+b \sinh ^2(e+f x)}}{3 a f \sqrt{\frac{\text{sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}+\frac{8 (a+b) \sqrt{a+b \sinh ^2(e+f x)} \tanh (e+f x)}{3 f}\\ \end{align*}

Mathematica [C]  time = 4.70133, size = 229, normalized size = 0.75 \[ \frac{4 i \left (5 a^2-2 a b-3 b^2\right ) \sqrt{\frac{2 a+b \cosh (2 (e+f x))-b}{a}} \text{EllipticF}\left (i (e+f x),\frac{b}{a}\right )-\frac{\coth (e+f x) \text{csch}^2(e+f x) \left (\left (64 a^2+32 a b-79 b^2\right ) \cosh (2 (e+f x))-32 a^2+2 b (6 a+11 b) \cosh (4 (e+f x))-44 a b-b^2 \cosh (6 (e+f x))+58 b^2\right )}{4 \sqrt{2}}-32 i a (a+b) \sqrt{\frac{2 a+b \cosh (2 (e+f x))-b}{a}} E\left (i (e+f x)\left |\frac{b}{a}\right .\right )}{12 f \sqrt{2 a+b \cosh (2 (e+f x))-b}} \]

Antiderivative was successfully verified.

[In]

Integrate[Coth[e + f*x]^4*(a + b*Sinh[e + f*x]^2)^(3/2),x]

[Out]

(-((-32*a^2 - 44*a*b + 58*b^2 + (64*a^2 + 32*a*b - 79*b^2)*Cosh[2*(e + f*x)] + 2*b*(6*a + 11*b)*Cosh[4*(e + f*
x)] - b^2*Cosh[6*(e + f*x)])*Coth[e + f*x]*Csch[e + f*x]^2)/(4*Sqrt[2]) - (32*I)*a*(a + b)*Sqrt[(2*a - b + b*C
osh[2*(e + f*x)])/a]*EllipticE[I*(e + f*x), b/a] + (4*I)*(5*a^2 - 2*a*b - 3*b^2)*Sqrt[(2*a - b + b*Cosh[2*(e +
 f*x)])/a]*EllipticF[I*(e + f*x), b/a])/(12*f*Sqrt[2*a - b + b*Cosh[2*(e + f*x)]])

________________________________________________________________________________________

Maple [A]  time = 0.288, size = 540, normalized size = 1.8 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(coth(f*x+e)^4*(a+b*sinh(f*x+e)^2)^(3/2),x)

[Out]

-1/3*(-(-1/a*b)^(1/2)*b^2*sinh(f*x+e)^8+3*(-1/a*b)^(1/2)*a*b*sinh(f*x+e)^6+3*(-1/a*b)^(1/2)*b^2*sinh(f*x+e)^6-
3*a^2*((a+b*sinh(f*x+e)^2)/a)^(1/2)*(cosh(f*x+e)^2)^(1/2)*EllipticF(sinh(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2))*si
nh(f*x+e)^3-2*b*((a+b*sinh(f*x+e)^2)/a)^(1/2)*(cosh(f*x+e)^2)^(1/2)*EllipticF(sinh(f*x+e)*(-1/a*b)^(1/2),(a/b)
^(1/2))*a*sinh(f*x+e)^3+5*((a+b*sinh(f*x+e)^2)/a)^(1/2)*(cosh(f*x+e)^2)^(1/2)*EllipticF(sinh(f*x+e)*(-1/a*b)^(
1/2),(a/b)^(1/2))*b^2*sinh(f*x+e)^3-8*((a+b*sinh(f*x+e)^2)/a)^(1/2)*(cosh(f*x+e)^2)^(1/2)*EllipticE(sinh(f*x+e
)*(-1/a*b)^(1/2),(a/b)^(1/2))*a*b*sinh(f*x+e)^3-8*((a+b*sinh(f*x+e)^2)/a)^(1/2)*(cosh(f*x+e)^2)^(1/2)*Elliptic
E(sinh(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2))*b^2*sinh(f*x+e)^3+4*(-1/a*b)^(1/2)*a^2*sinh(f*x+e)^4+8*(-1/a*b)^(1/2
)*a*b*sinh(f*x+e)^4+4*(-1/a*b)^(1/2)*b^2*sinh(f*x+e)^4+5*(-1/a*b)^(1/2)*a^2*sinh(f*x+e)^2+5*(-1/a*b)^(1/2)*a*b
*sinh(f*x+e)^2+(-1/a*b)^(1/2)*a^2)/(-1/a*b)^(1/2)/sinh(f*x+e)^3/cosh(f*x+e)/(a+b*sinh(f*x+e)^2)^(1/2)/f

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \sinh \left (f x + e\right )^{2} + a\right )}^{\frac{3}{2}} \coth \left (f x + e\right )^{4}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(f*x+e)^4*(a+b*sinh(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*sinh(f*x + e)^2 + a)^(3/2)*coth(f*x + e)^4, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (b \coth \left (f x + e\right )^{4} \sinh \left (f x + e\right )^{2} + a \coth \left (f x + e\right )^{4}\right )} \sqrt{b \sinh \left (f x + e\right )^{2} + a}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(f*x+e)^4*(a+b*sinh(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

integral((b*coth(f*x + e)^4*sinh(f*x + e)^2 + a*coth(f*x + e)^4)*sqrt(b*sinh(f*x + e)^2 + a), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(f*x+e)**4*(a+b*sinh(f*x+e)**2)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(f*x+e)^4*(a+b*sinh(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError